
=AD-AI'4 786 SYSTEMS RESEARCH LAOS INC DAYTON 0O4 F/S 9/2MANX: A SYSTEM -FOR COWeIJTRIZEO CONTROL OF AND DATA ACOUSITON--ETC (U)MAR 82 0 0 SLICK. .J T YATES. T 6 WHEELER F33GIS-SO-C-obo3

UNCLASSIFIED SAM-R-8-6 N

ELmhhhm

LU 1 J. W.2M

111L125 14 i 1

;i '5w

P.

IW,

n~jt is4

ft-n

aa

to 4w
will~~ 610aWt

Aj-$ oicareP~wt 7-

O o0l,.

-

T.~ '.' N-t $

low.*

U ~.~7,

'zr'~ J~f~j

"Nt

UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE ("en Date Entered)

READ INSTRUCTIONS
REPORT DOCUMENTATION PAGE BEFORE COMPLETING FORM

1. REPORT NUMBER 2. GOVT ACCESSION NO. 3. RECIPIENT'S CATALOG NUMBER

SAM-TR-82-6 AD- A 1X 7 ?Y'
4. TITLE (and Subtitle) S. TYPE OF REPORT & PERIOD COVERED

MANX: A SYSTEM FOR COMPUTERIZED CONTROL OF AND Final Report
DATA ACQUISITION FROM BEHAVIORAL EXPERIMENTS August 1979 - June 1980

6. PERFORMING 01G. REPORT NUMBER

7. AuTHOR(s) 8. CONTRACT OR GRANT NUMBER(&)

Dennis W. Bltck, Ph.D. F33615-80-C-0603
J. Terry Yates, Ph.D.
Thomas G. Wheeler. Ph.D.

9. PERFORMING ORGANIZATION NAME AND ADDRESS 10. PROGRAM ELEMENT. PROJECT. TASK

Systems Research Laboratories, Inc. AREA & WORK UNIT NUMBERS

2800 Indian Ripple Road 62202F
Dayton, Ohio 45440 7757-05-43

It. CONTROLLING OF:ICE NAME AND ADDRESS 12. REPORT DATE

USAF School of Aerospace Medicine (RZW) March 1982
Aerospace Medical Division (AFSC) 13. NUMBER OF PAGES

Brooks Air Force Base. Texas 78235 23
14. MONITORING AGENCY NAME & AOORESS(il difllernt from Controlling Ofiie) IS. SECURITY CLASS. (of this report)

UNCLASSIFIED
15a. DECL ASSIFICATION/DOWNGRAOING

SCHEDULE

16. DISTRIBUTION STATEMENT (of this Report)

Approved for public release; distribution unlimited.

17. DISTRIBUTION STATCMENT (of the abestct entered In Block 20. It different rom Report)

1. SUPPLEMENTARY NOTES

IS. KEY WORDS (Continue an reverse side it neceessiy and Identify by block number)

Behavior
Instrumentation
Computer control
Minicomputers

20. ABSTRACT (Continue an reverse side if neceeery id Identify by block number)

This report is a general description of MANX, an integrated hardware/software
system for the precise control and measurement of animal behavior. MANX and
its State Programming Language facilitate optimal utilization of the NOVA
laboratory computer for behavioral experiments..

DD I AN72 1473 EDI TION OF I NOVss IS OBSOLETE
DDCUITYUNCLASSIFIED
SECURITY CLAUII|CATION OF THIS PAOIR (ften Do Itnterso

SECURITY CLASSIFICATION Or THIS PAGE(Win Does Entered)

SECUllI?Y CLAUIPICAIN OF *0111 PAGE (W-ns Sue. r*-.

MANX: A SYSTEM FOR COMPUTERIZED CONTROL OF AND DATA
ACQUISITION FROM BEHAVIORAL EXPERIMENTS

This report will describe the functional properties of MANX (M4ANX Systems,
Inc.), an integrated software and hardware system that provides a means for
using a NOVA computer (Data General Corporation) to precisely control and
acquire data from a variety of behavioral experiments.

Because of its unique applicability to and advantages for the types of
research being conducted there, MANX was implemented at the USAF School of
Aerospace Medicine (USAFSAM) by Systems Research Laboratories. MANX enables
the available laboratory computer to simultaneously control and collect data
from as many as 30 distinct and independent experiments. This provides the
capability for several investigators to conduct multiple behavioral research
projects within the confines of a single laboratory. The simple yet powerful
MANX programmring language allows rapid generation and modification of programs
to control a variety of experiments. Flexible input/output (I/0) arrangements
facilitate interfacing the computer to diverse experimental apparatus.

BACKGROUND

The MANX software system is basically an adaptation of SKED (State Systems,
Inc.) (12). SKED was developed for use with the Digital Equipment Corporation's
POP-S computers. MANX, which was modeled after SKED, was developed to provide
the advantages of SKED to users of NOVA computers. Since MANX and SKED are
very similar functionally, much of the following description applies equally to
both software systems.

The development of specialized software packages for laboratory use in the
behavioral sciences was a natural consequence of two historical trends. First,
as empirical knowledge and theory in the area grew, experimental questions grew
more precise and detailed. This required more and more precise instrumentation
and data acquisition. Automation of experiments has several obvious advantages.
A mechanical experimenter not only removes much of the drudgery from collecting
large numbers of observations, it is also more accurate and reliable, it pre-
sents each subject with the same experimental situation, it doesn't display
biases associated with fondness for particular experimental hypotheses, and it
will work 24 hours a day if the experiment requires it.

In the late 1930s, Skinner (11) introduced new instrumental technologies
and a new empirical approach into the behavioral laboratory. This resulted in
a new school of psychological thought, known as the Experimental Analysis of
Behavior, which concentrated on describing the behavioral effects of a variety
of stimulus-response contingencies. In 1957, Ferster and Skinner (1) published
a monumental handbook, defining a large variety of schedules of reinforcement

* and describing their effects on operant behavior. By this time, many behavioral
experiments entailed the use of large racks of electromechanical devices (re-
lays, timers, counters, cumulative recorders, etc.) for stimulus control and
response recording purposes.

(ai..\ -- Avail ad/or

1o Dist ISpecial

2#

During the late 1950s. and early 1960s, as transistor-based electronic
technology developed, many of the older electromechanical devices were gradually
replaced by electronic devices packaged as digital logic modules. Although the
new electronic devices were smaller, faster, and more reliable than the electro-
mechanical devices they replaced, they did not modify the basic nature of
experimental control. Each new experiment or modification of experimental
design required that the apparatus be "programmied" by changing the "hard-wired"
relationships among the many components. The design, construction, testing,
and modifications of these hard-wired programs was a tedious process, at best.

As small digital computers became available for laboratory use, experi-
mental psychologists were quick to recognize the advantages of this new technol-
ogy for experimental control and analysis (9,15,16). The speed, flexibility,
and computational power of the computer greatly increased the variety of
experiments that could be conducted in each laboratory and made possible new
classes of experiments that were impossible or unfeasible with the older tech-
nologies. The major advantage, however, was that computers allowed modification
or generation of experiments by purely symbolic (software) manipulations,
without requiring extensive rewiring of the apparatus. In other words, once
the computer was interfaced to one or several experimental stations in such a
way that it could sense responses and operate stimuli, any number of different
experiments could be performed on the station(s) simply by running different
programs in the computer.

Initially the computer programs generated to control behavioral experiments
tended to be in the machine language of the particular computer in use in each
laboratory. This made the programing of changes in experiments almost as
tedious as by the old method (rewiring). As laboratory computers grew larger
(in terms of memory capacity) and more powerful, programs in higher level
languages (e.g., BASIC, FORTRAN, APL) were developed. However, these languages
are specialized for computational procedures rather than the on-line control of
processes in real-time. Also, these languages typically use computer memory
inefficiently. Consequently, these languages were cumbersome to use for behav-
ioral programmning, which involves control sequences that vary depending on the
behavior of the experimental subject. There was thus a clear need for higher
level progranmming language systems specialized to handle the problems of behav-
ior analysis and control.

A number of systems were developed to meet this need (17). The most
widely known of the software packages specialized for behavioral control are
SCAT (State Change Algorithm Translator, developed and distributed by Grason-
Stradler, Inc. (10)); INTER-ACT (an Interactive Automated Contingency Translator,
developed and distributed by BRS-LVE--now BRS-Foringer, Inc. (8)); and SKED
(developed in an academic setting and distributed by a nonprofit corporation,
State Systems, Inc.). Because of its flexibility, efficient hardware utiliza-
tion, and relatively low-cost implementation, SKED is currently the most widely
used of these systems.

SKED was originally developed in 1966. It has been expanded and refined
to take advantage of mass storage devices and more sophisticated operating
systems. In current implementations (PDP-8s with 32K words of memory and disk
storage devices), it can simultaneously control 12 independent behavioral
stations in a time-sharing mode. This allows program development or data
processing to occur while the behavior control system is functioning. SKED has

2

not yet been adapted to operate in the environment of more modern Digital
Equipment Corp. machines; e.g., the PDP-ll.

The MANX system was developed to meet the behavioral programmning needs of
users of NOVA computers. It was modeled after SKED but has minor functional
differences. For example, MANX can control up to 30 independent stations, as
compared to SKED's 12. On the other hand, MANX requires 64K words of memory in
order to operate in a time-sharing mode. Since the NOVA 800 computer in our
laboratory has only 32K words of memory, the machine is fully dedicated to the
behavioral control task whenever any behavioral station is in operation. Off-
line data analysis and program development must be accomplished during periods
when no behavioral stations are in use.

MANX SYSTEM DESCRIPTION

Two brief published descriptions of the MANX system (originally called
NOVA SKED) are available (5,6). Complete documentation is available in the
form of systerm manuals provided by the vendor (2-4). The purpose of this paper
is to provide a condensed functional description of the system as implemented
at USAFSAM, emphasizing the features that have proven particularly useful for
studying hazardous-enviroment effects on animal performance models.

The MANX system consists of two major components: software systems and
hardware components. The hardware components include two digital 1/O cards in
the computer and two interface panels in the laboratory. The 1/0 cards and
interface panels allow the computer to sense the subjects' responses and to
operate apparatus that present stimuli to the subjects. Sixty-four input
(response) lines and 128 output (stimulus) lines are available. The specific
connections of these hardware components for individual experiments will be
documented in detail in separate reports for each major experiment. This
report will concentrate on the MANX software system, describing only in general
terms the hardware environent in which it operates at USAFSAM.

Figure 1 is a simplified block diagram of the systems involved in experi-
mental control, data acquisition, and data analysis, when MANX is used on the
NOVA 800 computer. The dashed vertical line in Figure I separates two distinct
but interacting functional systems. The A side of the figure depicts the comn-
ponents involved in on-line control of experimental operations, including data
acquisition. In the current system configuration, operations on the A side
preclude operations on the B side. This means that program generation and
modification, as well as data analysis, must be done off-line, when the MANX
runtime system (RTS) is deactivated.

All computer operations are under the executive control of RDOS, Data
General Corporation's real-time disk operating system. This operating system
is fully documented in Data General manuals. RDOS provides for operation of
the system's real-time clock, interpretation of commnands from the system con-
sole, analog-to-digital and digital-to-analog conversion, input and output
operations on the digital I/0, and manipulation of data and text files on the
system's mass storage devices (disks and magnetic tape).

Included with RDOS is a text editor routine which is used to enter and
modify source programs for experimental control and data analysis. As indicated

3

tieDisk NOVA
pe aing 0 - Text

ystem EdBtok

oo Sstan ac
stores-data-fromthe stationts

Anaysi

A Ne p M u MANX s

Binary Compiler Sthm
Programs at o min

FORRAN oper.ati nlrs is p roasoerate MANX datfes to

s tor, clatard smDtarnta o uo p ier

progamsare rFnlatdit ahn gae TAN ther oplr

ii

Diur 1.AN i Sotwaare t Drame

Frtion (omi). hen anyis rm operationn MANX biaydrgasar floaesd

sores dolaterm th stmatizeeons.e o ermns

in Figure 1(B), source programs are of two distinct types. MANX source pro-
grams are written in State Logic Notation. Data analysis programs are written
in FORTRAN IV, a widely used higher level language provided and documented by
Data General for use on this computer.

Four major components of the MANX software system are indicated in Figure
1(B): the system generator, library and utility package, compiler, and source
programs.

The MANX system generator is a program to generate a MANX RTS tailored to
the facilities and needs of the individual laboratory. The program elicits
keyboard inputs from the user to determine number of behavioral stations (1-30),
characteristics of the computer system (hardware or software multiply/divide
functions, types of 1/O devices), and which MANX system and user functions
(described later) are to be included in the RTS. This allows the user to
tailor a runtime system that uses the smallest amount of computer memory possi-
ble, consistent with experimental requirements. For a given laboratory, system
generation would typically be performed only once unless experimental require- ,

ments or hardwiare configuration changed substantially. Minor changes, such as
modification of station input/output configurations, can be made easily without
going through the system generation process.

At system generation time, the MANX system generator searches through the
contents of the MANX library and utility package so as to provide the runtime
system with the capabilities required by the user. This library includes all
FORTRAN and assembler programs and subroutines required for experimental con-
trol and data acquisition, as well as a library of test routines and data
analysis programs. It also provides users with easy-to-use programs for mass-
storage backup (on magnetic tape) of experimental data. Routines for decoding,
sorting, and statistically reducing and plotting experimental data are also
provided. User-generated data analysis routines, written in FORTRAN, can
readily use MANX library subroutines to sort, decode, and manipulate MANX data
f il1es.

The MANX compiler (MXCOM) is a large FORTRAN program that accepts MANX
source programs as inputs and produces MANX system binary programs which can be
called and run by the MANX RTS (Fig. 1(A)). MANX source programs are written in
State Logic Notation, a simple yet powerful language that is easily learned and
used by behavioral experimenters. (This language will be described in detail
later.) The MANX binary programs produced by MXCOM can be loaded and run by
MANX RTS in any behavioral station under MANX control.

MXCOM is a two-pass compiler, with an optional third pass to produce
listing files. On the first pass, MXCOM scans the source program for syntax
errors. If and when such errors are found, detailed error messages presented
on the console allow the user to Identify and correct the errors quickly. If
syntax errors are foui~d, MXCOM terminates after the first pass. In the second
pass, MXCOM produces the binary programs that will actually control experiments
when they are loaded by the RTS. The listing files, which can be produced by
an optional third pass, are generally useful only to systems analysts.

The MANX RTS (Fig. 1(A)) is a multitasking assembly language program capable
of running in the foreground or background under RDOS. The RTS can control as
many as 30 experimental stations operating simultaneously,. Each station

5

operates independently of all others. With MANX binary programs stored on the
disk, any station can be loaded, started, or stopped while other stations are
in operation, usinq the same or different MANX binary nroarams. A disk data
file for eacti station is automatically opened when it is loaded, and closed
when it is stopped. Relative input and output bit assignments in the MANX
binary programs are resolved by the RTS to absolute inputs and outputs for each
station by reference to a look-up table in a disk file (MANX.IO) which the user
prepares in advance. Alternative 1/0 assignments can be generated, and the RTS
will refer to any 1/0 look-up table the user specifies when starting the RTS.
This provides great flexibility in connecting the interface to experimental
apparatus, as changes in these connections require changes only in the 1/0
look-up table, not in the programs.

The RTS responds to a variety of keyboard commnands. These allow, for
example, examining experimental data (values of counters and program variables)
as it accumulates; modifying 1/0 assignments or program variables 1 on-the-fly';
determining which stations are active and what program is running in each
active station; effecting start, stop, pause, and resume for any station;
artificially turning any input or output line on or off by keyboard commnand;
and checking on memory and/or disk space availability.

The RTS is a real-time operating system that derives its timing functions
from the RD0S system clock. The RTS can accomm~odate clock rates of 1, 10, 100,
or 1000 Hz; system overhead, however, tends to become excessive at the highest
clock rate. The current system uses a clock rate of 100 Hz, which provides
temporal resolution of 10 msec for response detection or stimulus presentationi.

The RTS stores data from each station in one of two 256-word buffers in
memory. When one of these buffers is filled, it is automatically written to
the disk data file that was opened by the RTS when the station was loaded.
Data accumulates in the second buffer while the first is being transferred to
disk. The active data buffer is written to the disk data file when the station
stops normally at the end of the experimental run.

For each experimental run, the disk data file contains header information
that includes date, experiment number, subject number, group number, program
number, and number of counters. Experiment, subject, and group numbers are
supplied by the operator when loading; the other information is included
automatically. At the time of system generation, the user has the option of
including treatment, dose, and operator identification in the data-set header.

MANX data can be gathered and stored in two basic forms: the relay-rack
form (counters) and/or as coded interevent times (IET). The relay-rack form
is a vestige of the time when most experimental analyses of behavior were
performed using racks of electromechanical equipment (relay racks) to control
the experiment and record the outcomes. A bank of counters was usually some-
where in the relay rack. Each counter accumulated the total number of occur-
rences of some class of events of interest. At the end of each experiment (or
sometimes at intervals during the course of an experiment), the values of the
counters were recorded and the counters were reset to zero. MANX provides a
similar facility. As many as 4095 distinct classes can be counted. The values
of the counters and the station header information can be displayed on the
video terminal or printed on the hard-copy console device or on the line printer,
whenever the operator enters the appripriate console commnand. Counters and

..... ...

header information can also be output to the console or line printer automat-
ically, under program control. Programs can also generate console messages
to the operator.

The IET mode of data collection provides much more detailed information
about the sequence of events in an experiment. Whenever an event of interest
occurs (e.g., a response, a stimulus change, or simply the passage of a speci-
filed period of time), the following information is written in the dataset: a
code for the class of event and the time since the last event was recorded.
The IET data thus provides enough information to allow a complete reconstruction
of the entire sequence of events in the experiment, with time resolution to
10 msec. As many as 64 distinct classes of events can be coded, with lETs
allowed to range from 0.00 seconds to 7.7 days. If more than 64 classes of
events are of interest, coding can be expanded to include storage of the value
of a program variable with the event code. This expands greatly the detail
with regard to events that can be recorded, but restricts the available range of
IETs to about 6 hours--not a severe restriction for most behavioral purposes.

To summal-ize, the MANX system described above provides a means for the
laboratory minicomputer (NOVA 800) to control and gather data from as many as
30 simultaneous but independent experiments. Each distinct experiment requires
a different program, but the nature of the MANX programming language (State
Logic Notation) makes it simple for experimenters to generate such programs.
The number and variety of experiments that can be performed are not limited by
the MANX software system, but rather by the hardware environment in which it
operates.

The hardware environment in which MANX operates in this laboratory is
diagranmmed in Figure 2. The NOVA 800 minicomputer is an early (ca. 1962) model
of Data General Corporation's NOVA line of computers. It is equipped with 32K
words (16 bit) of core memory. The central processor is connected via con-
troller boards to two mass storage devices (a dual disk drive and a 9-track
magnetic tape unit), to a high-speed line printer, and (by switch selection) to
either a teletype or a video terminal. Two digital 1/0 boards from G C Controls,
Inc. of Smithville Flats, New York were recently added to the configuration.
The I/0 boards are installed in the computer main frame (Slots 11 and 14) and
connected directly (via the backplane) to the NOVA processor. They provide 64
bits (lines) of digital input and 128 bits of digital output. The input bits
require high-speed, 5-V transistor-transistor logic (TTL) signals to operate.
The output bits provide TTL signals.

Each 1/0 board is connected via cables to one of the two MANX interface
panels located in the laboratories. Each MANX interface panel (also from G C
Controls, Inc.) has 32 input and 64 output circuits. The input circuits trans-
form switch closures and other input signals into TTL signals and serve as
buffers to protect the I/0 boards and computer from laboratory voltages. The
MANX panels also contain both switches for testing the input channels and
indicator lights (light-emitting diodes, or LEDs) to indicate their status.
The output circuits transform computer-produced signals (TTL) into higher power
signals (24 V at up to 1.5 A) to drive laboratory apparatus that provide
stimuli (lights, tones, aversive and appetitive reinforcers, etc.) to the
subjects. Indicator LEDs on the MANX panel signal the experimenter when each
output circuit is active.

7

The MANX interface panels are currently connected to three monkey-behavior
and seven rat-behavior stations. Monkeys are being trained/tested on a short-
term memory task (delayed matching to sample) with a secondary vigilance task.
This set of tasks requires at least seven inputs and 20 outputs per station.
Of the seven rat stations, six are used for relatively simple tasks (conditioned
suppression or shuttle avoidance) which require only two inputs and six outputs
per station. The remaining rat station is designed to gather shuttle avoidance
data from nine rats simultaneously; it requires nine inputs and five outputs.
With 89 of the 128 available outputs and 36 of the 64 available inputs currently
occupied, MANX I/O capacity could handle an additional monkey station or several
additional rat stations. Current experimental needs do not, however, require
additional stations, since as many as 24 monkeys and 60 rats can be tested on a
daily basis in the current configuration.

Termina Consol

Printer

MANX 0ga NOVA 800 u
NInterface elemet co n i sRoceor Ds-

Experimental Stations
Man fr t e

SVideo a Teletype "
Terminal whiCosole ta

Figure 2. NOVA 800 -- MANX hardware system block diagram. The NOVA 800 uses
MANX software (Fig. a) to control experiments via digital /0
boards installed in the computer. Cables connect the / boards to
MANX i n e prnte nts that con input signals from and pro-
vide operational current to stimulus and response apparatus in the
experimental stations. The operator enters commands from the tele-type console on video terminal which causes the MANX RTS and MANX
programs to be read into the computer from the disk. The RTS con-
trols the stations and transfers data to files in the disk.
Permanent copies of data files are made daily on magnetic tape.
Both the line printer and the teletype console are used to pro-
vide immediate printed summaries of the results of each experi-
mental run.

8

73

r -

MANX PROGRAMMING IN STATE LOGIC NOTATION

The MANX software system allows an experimenter to translate a State Logic
diagram directly into a machine language program to operate an experiment.
State Logic developed from the mathematical the:ry of finite automata. Most
readers will recognize it as represented by the familiar flow chart. It pro-
vides a description of sequential processes in which each output is completely
and uniquely determined by the current input and the preceding set of inputs.
The typical behavioral experiment is such a sequential process (12). For
controlling such processes, State Logic has been shown to provide rules that
involve the minimal amount of control logic while completely eliminating inde-
terminate states of the experiment or process (7). As a language for the con-
trol of behavioral experiments (13,14), State Logic Notation has several major
advantages:

1) generality across different experimental problems;

2) simplicity, which makes it easy to learn and apply;

3) sufficient power to describe the most complex sequential processes
and contingencies; and

4) efficient use of computer memory and processing capacities.

The applicability of State Logic Notation to behavioral experiments can be
illustrated with a few simple examples. Figure 3 is a state diagram of the
continuous reinforcement paradigm. In this paradigm, each response of the
subject (e.g., a lever press, symbolized by Rl) is followed immediately by the
presentation of a reinforcing stimulus (e.g., the availability of food or water
to the deprived animal, symbolized by SR). In Figure 3, the experiment has
three states. State 1 represents the conditions before the experimenter starts
the experiment. The animal is in a dark Skinner box; responses have no effect.
When the experiment is started, transition (symbolized by an arrow) to State 2
occurs. At the instant of transition, the house light (HL) is turned on and a
variable (A) is set to zero. In State 2, a response will produce transition to
State 3, in which reinforcement is available for a limited period (4 s).
Variable A is incremented by 1 each time a reinforced response occurs. At the
end of 4 seconds in State 3, transition to either of the other two states can
occur, depending on the value of variable A. If 100 reinforced responses have

START: ON HL; A- RI: O SRADDA 3

ELSE

II THEN OFF HL 41, 4": OFF SIR

Figure 3. State diagram of program to produce continuous reinforcement of
responses (RI) until 100 reinforced responses have occurred.

9

.. P"_ I_

occurred, then transition is to State 1, otherwise (ELSE) transition is to
State 2.

Figure 3 demonstrates nearly all the major features of State Logic Notation.
More complex training or testing paradigms consist of more complex contingencies,
but each such procedure can be reduced to a series of states that describe the
momentary contingencies and the stimuli present while each state is active.
Figure 3 describes a set of procedures, not the outcome of the experiment. If
the animal never responds, no reinforcements will be delivered. If fewer than
100 reinforced responses occur, the house light will remain on.

While the State Logic diagram (Fig. 3) is a convenient and compact way of
describing the contingencies in an experiment, it is not a convenient input
form for a computer. It can, however, be readily translated into a MANX source
program:

/ CRF-100 ("/" indicates that a comment will follow, which is
ignored by compiler)

/ PRGNO=l

/ Program to turn on house light at START,
/ provide 100 reinforced responses on continuous
/ reinforcement schedule, then turn off house light.

S.S.I, /State set I

Si, / First state, wait for START
START:ON HL;SET A=O ---> S2

S2, / Detect responses, start reinforcement
RI:ADD A;ON SR --- > S3

S3, / End reinforcement, count reinforcements and
/ test for 100 reinforced responses

4" & A(100):OFF SR;OFF HL ---> Sl / IF A=l00 THEN STOP
:OFF SR ---> S2 / Else return

$ / End of Program

This simple MANX source program, after being entered into the computer via a
text editor, can be compiled by the MANX compiler, which produces a binary
(machine language) program. Whenever the binary program is loaded to a behav-
ioral station under control of the MANX RTS, the set of state contingencies
diagrammed in Figure 3 will be in effect for that behavioral station.

This MANX program consists of a single state set; i.e., a set of states
related such that each state (except the first, which Is always entered at the
start of the program) can be entered by transition from at least one other
state. More complex programs often have several state sets, each accomplishing
a separate function. For example, one state set might detect responses and set
up reinforcements under a complex set of contingencies, while another state set
actually delivers the reinforcements and another constructs a frequency distrib-
ution of interresponse times (IRTs).

10

..

MANX provides a convenient device, called a Z-pulse, to allow separate
state sets in a program to interact with each other. Note that each statement
in the sample program presented above has the form

Condition:Operation(s) Transition to > Destination State

In each state certain conditions are specified. Whenever an event occurs that
satisfies the condition, transition to another state occurs. Operations on
program-controlled devices and on program variables can occur only when the
condition is met and transition occurs. Z-pulses are artificial events that
can be generated as an operation when a transition takes place. They can also
serve as an input to satisfy a condition and produce state transitions. To
illustrate:

/ PROGNO=2 -- VR schedule with IRT distribution.
/ A three-state-set program to present reinforcements on a
/ variable ratio schedule, the ratio (number of required
/ responses) for each reinforcement being taken serially from
/ a LIST. Counters provide a frequency distribution (bin
/ width = 2 s) of interresponse times. Zl pulse is used
/ to initiate presentation of reinforcement (3 s of dipper
/ availability) and to select the next ratio from the LIST.

S.S.1, / State set to start and stop program and count
/ responses

Sl, / Wait for start, set up reinforcement for
/ first response

START: ON HL;Set A=l, B=10, C=3 ---- > S2

S2, / Detect and count responses, stop after 50
/ reinforcements

Rl: Zl; Cl ---- > SX / null transition
50Z2:OFF HL;Z3 ---- > Sl

S.S.2, / Ratio contingency, operate and count
/ reinforcements

S1, / Wait for variable number of responses, start
/ reinforcement, select next ratio

AZl: LIST lO,B,A,lO,5,15,3,12,20,4,16,8,17;C2;ON SR ---- > S2

S2, / Stop reinforcement
3": OFF SR;Z2 ---- > Sl

S.S.3, / Frequency distribution for IRTs

Sl, / Wait for first response
Zl: S2

11

S2, /Increment bin Pointer, count and reset on
/response

2":ADD C ---- > S2 / Increment bin pointer every 2"
Z1:CC; Set C=3 ---- > S2 / Count and reset bin pointer
Z3: ---- > Si Return after 50 reinforcements

$ /End of Program

In this example, State Set 1 merely starts and stops the program and detects
and counts (Cl) responses. Each response produces a Zi pulse that is used by
the other state sets. State Set 2 waits for a variable number (the value of
variable A) of responses, then-starts and counts (C2) reinforcements and selects
the next ratio value from the LIST. The end of reinforcement generates a Z2
pulse, which is used by State Set 1 to stop the program at the end of 50 rein-
forcements. State Set 3 waits for the first response and thereafter increments
a counter on each response. The counter incremented (C) corresponds to a bin
of a histogram of IRTs. Counter 1 contains the total number of responses;
Counter 2, the number of reinforcements; Counters 3, 4,.... N contain frequen-
cies of IRTs between 0 and 2 seconds, 2 and 4 seconds, 2N-6 and 2N-4
seconds, respectively.

This program illustrates the use of Z pulses to communicate within and
among state sets, as well as the use of program variables and LIST--one of a
number of MANX system functions. Variable A was initially set to 1 so that the
first response would be reinforced. Thereafter, A sequentially took on the
values in the LIST function, which were selected to yield a variable ratio of
responses to reinforcements with a mean value of 10 responses per reinforcement.
Variable B is used by the LIST function as a pointer to the next value to be
taken from the list. By convention it was initially set equal to the number of
elements in the list. Variable C was used as a pointer to the counter array for
the IRT frequency distribution. On each response, Counter number C was incre-
mented; then C was set to 3. Until the next response, C was incremented every
2 seconds.

A state diagram (Fig. 4) may help to clarify the operation of this program.
Note that a transition from a state to itself can occur in two ways. In State
Set 1, the Rl: transition from State 2 to State 2 is an example of the "null
transition," symbolized by a broken arrow on the state diagram and by (--> SX)
in the program example. The null transition allows reentry to the state with-
out reinitializing any counters or timers (e.g., 50Z2:). Thus, after entry
from State 1, any number of response-produced null transitions may occur while
the 50Z2: contingency remains in effect. In State Set 3, the recurrent transi-
tions from State 2 to State 2 have a different form. Transition to State 2 is
indicated normally, so the timer for the 2-second contingency is reset on each
reentry to the state.

Z pulses can also be used as part of a compound condition (logical ANDe
function). For example:

51,
Rl:Zl ---- > S2 (When Rl occurs generate Zl pulse and go

to State 2)

12

Z& P(500):ONl ---- > S3 (When Zl occurs, with probability = .500,

.0N2 ---- > 54 turn on Stimulus 1 and go to State 3;
otherwise, turn on Stimulus 2 and go to
State 4)

Another example:

S1, 10"MZ ---- > S2 (After 10 s, branch to State 3, 4, or 5,
depending on whether Variable S has the

S2, value 0, 1, or 2. If none of the above,
ZI & S(0): -- > S3 return and wait 10 s more)

5(1: -- >S4

S(2): S-> 5
- -- Sl

State Set 2

SAR: CON HL2SR2:Z

r OFF S

State Set 2

;O S-

_ _4 - ID.
ZI: Z3

This example illustrates some of the combinations of logical OR and AND
functions available. Note that State 2 could also be entered from another
state, and the state set might then remain in State 2 until another state set
caused a Zl pulse to be generated. Thus a single branch point can serve
different functions in a program, depending on when and how transitions to it
occur. Following is a brief glossary of conditions and operations frequently
used in MANX programs.

Condition: Satisfied by:

10R2: Occurrence of 10 responses of class 2

RT: Time elapsed since state entered = the value of Variable RT.

Z9: The generation of a Z9 pulse, either by another state set or by
the state from which transition occurred.

Rl & P(250): R1 (with probability = .25).

Z2 & A00O): The occurrence of a Z2 pulse if and only if the value of
Variable A is currently 10.

AZ5: The occurrence of a number of Z5 pulses, the number being deter-
mined by the value that Variable A had when the state was entered.

Operation: Effect:

ON 2 Turn on Stimulus 2

OFF 9 Turn off Stimulus 9.

ON X Turn on a stimulus selected by the current value of Variable X.

ADD X Increment the value of Variable X.

SUB Y Decrement the value of Variable Y.

SET A=99 Set Variable A = 99.

SET B=A-lO Set Variable B = 10 less than the current value of A (possible
operators are +, -, /, and *, but result must always be a
positive integer).

SET CT=120' Set time variable C-2 hours.

CODE 12 Store Code 12 with the time since the last coded event.

CODE N Store a code determined by the value of N with the time since
the last coded event.

C9 Increment Counter 9.

CP Increment the counter that Variable P points to.

14

TIME X, Y, Z Get the time of day in hours and minutes.

WRITE 60,X Store code 60 with value of X (e.g., time in hours, minutes).

CALL TEST(A,B,C,)
Set C = 1 if A > B

= 2 if A = B
= 3 if A < B

RAND N,A,B,N19N29N3 9...*NN
Select randomly (without replacement) from the N values listed.
Assign the value selected to Variable B.

TYPE "MESSAGE" ,N,V
Send MESSAGE and values of Variables N and V to system console.

LIST N,A,B,N.I,N 29...N N
Set Variable B = the Ath member of the list and increment A.
If A >N, set A = 1.

A complete and rather complex functional program used to assess short-term
memory in the rhesus monkey is presented for illustrative purposes in Appendix
A. This program accomplishes a titrated delayed-match-to-sample task. On each
trial, the program presents a randomly selected color (the sample) on a back-
lighted response key. The monkey is required to indicate that he has seen the
sample by touching the key, at which time the sample light is turned off.
After a variable delay, three other keys are lighted with three different
colors, one of which matches the sample. The monkey's task is to choose and
touch the key illuminated with the color that matches the previously presented
sample. The position of the correct match varies randomly from trial to
trial. On each trial, the colors of the sample and the two incorrect alterna-
tives are selected randomly from among four colors: red, green, blue, and
white. The duration of the delay varies from trial to trial, depending on the
monkey's performance on preceding trials. After any two consecutive errorless
trials, the delay is increased by 1 second. After each trial in which an error
occurs, the delay is reduced by 1 second. Within each test session, the delay
will thus oscillate around a duration at which the animal can maintain 66.7%
accuracy of performance. After a brief period of settling in at the beginning
of the session, the average delay can be used as a direct measure of the short-
term memory of the monkey.

Before monkeys can perform stably at this complex and difficult task, they
require a lengthy training period, beginning with much simpler tasks and pro-
gressing to more complexity. As each animal masters each phase of the training,
the task is gradually modified in closer and closer approximation to the final
task. The MANX systemn is extremely well adapted for such a training program.
MANX provides the experimenter with the flexibility necessary to allow each
animal to progress at his own pace. The progress of each animal can be closely
monitored, and programs can easily be modified to facilitate progress. Each
phase of the training is represented by a different MANX program. The whole
group of animals is not required to progress in lock-step through the training
sequence because any animal can be trained using any MANX program in the sequence
at any time.

.........

To attempt such a training program using traditional hard-wired behavioral
control apparatus would require heroic efforts, since the apparatus would
require modification on a daily (or even hourly!) basis. The availability of a
system like MANX not only reduces the effort required for such a training
program to a small fraction of what would be required without MANX, it also
enables a variety of other behavioral research projects to be conducted during
this lengthy training program.

While 15 to 18 monkeys were being trained daily over a period of months,
several experiments on the effects of ionizing radiation and psychological
stress on avoidance behavior in the rat were carried out. The details of
instrumentation and programming for all of these experiments will be fully
documented in separate reports.

The purpose of this report has been to describe the general nature of
MANX, an integrated hardware/software system that is easily adaptable to any
investigation requiring precise control and measurement of animal behavior.
The complex behavioral program presented in Appendix A will illustrate the
power and flexibility of the MANX programming language as an implementation of
State Notation. This programming system, coupled with the support software and
hardware interfacing systems described in this report, facilitates optimal
utilization of the NOVA laboratory computer for behavioral experimentation.

REFERENCES

1. Ferster, C. B., and B. F. Skinner. Schedules of reinforcement. New York:
Appl eton-Century-Crofts, 1957.

2. Gilbert, S. G. MANX introduction. Rochester, New York: MANX Systems,
Incorporated, 1979.

3. Gilbert, S. G. MANX support software. Rochester, New York: MANX
Systems, Incorporated, 1979.

4. Gilbert, S. G. MANX users manual. Rochester, New York: MANX Systems,
Incorporated, 1979.

5. Gilbert, S. G., and D. C. Rice. NOVA SKED: A behavioral notation
language for Data General minicomputers. Behav Res Meth Instrum
10:705-709 (1978).

6. Gilbert, S. G., and D. C. Rice. NOVA SKED II: A behavioral notation
language utilizing the Data General Corporation real-time disk operat-
ing system. Behav Res Meth Instrum 11:71-73 (1979).

7. McClusky, E. J., Jr. Introduction to the theory of switching circuits.
New York: McGraw-Hill, 1965.

8. Millenson, J. R. On-line sequential control of experiments by an auto-
mated contingency translator. In B. Weiss (ed). Digital cmuters in
the behavioral laboratory. NewYork: Appleton-Century-Crofts, 1973.

16

-"),

9. Miller, G. A., A. S. Bregman, and D. A. Norman. The computer as a
general purpose device for the control of psychological experiments.
In R. W. Stacy and B. D. Waxman (eds). Computers in biomedical re-
search, Vol. 1. New York: Academic Press, 1965.

10. Polson, P. G. SCAT: Design criteria and software. Behav Res Meth
Instrum 5:241-244 (1973).

11. Skinner, B. F. The behavior of organisms. New York: Appleton-Century-
Crofts, 1938.

12. Snapper, A. G., and G. Inglis. SKED software system, manual 3, revision
C. Time-shared SUPERSKED. Kalamazoo, Michigan: State Systems,
Incorporated, 1979.

13. Snapper, A. G., and R. M. Kadden. Time-sharing in a small computer
through the use of a behavioral notation system. In B. Weiss (ed).
Digital computers in the behavioral laboratory. New York: Appleton-
Century-Crofts, 1973.

14. Snapper, A. G., J. Knapp, and H. Kushner. Mathematical description of
schedules of ;-einforcement. In W. N. Schoenfeld (ed). The theory of
reinforcement schedules. New York: Appleton-Century-Crofts, 1970.

15. Stacy, R. W., and B. D. Waxman (eds). Computers in biomedical research,
Vol. I. New York: Academic Press, 1965.

16. Weiss, B. (ed). Digital computers in the behavioral laboratory. New
York: Appleton-Century-Crofts, 1973.

17. Wood, R. W., W. F. Sette, and B. Weiss. Interfacing the experimenter
to the computer: languages for psychologists. Am Psychol 30:231-238
(1975).

1

APPEN4DIX A.

MANX SOURCE PROGRAM FOR TITRATEO OELAYEO-MATCH-TO-SAMhPLE

(Delay between sample offset and match onset titrated
so as to maintain 66.7% accuracy of response.)

19

/DMTS. SK NUMBER OF COUNTERS = 36 PROGRAM NUMBER =45
/TITRATED DELAYED-MATCH-TO-SAMPLE, SAMPLE IS RANDOM SELECTION
/FROM 4 HUES (RED, GREEN, BLUE, WHITE). ONE ALTERNATIVE MATCHES
/SAMPLE, THE OTHER 2 ARE SELECTED RANDOMLY FROM REMAINING 3 HUES.
/AFTER ERROR, PRESENTATION IS REPEATED UNTIL TRIAL ENDS WHEN
/CORRECT ALTERNATIVE IS SELECTED WITHOUT ERROR. POSITION
.fOF CORRECT ALTERNATIVE CHANGES AFTER EACH ERRORLESS TRIAL
/(RANDOM 50-50 FROM THE 2 INCORRECT POSITIONS OF THE PRECEDING
/TRIAL). DELAY STARTS AT 4", INCREASES 1" FOR EACH PAIR OF
/CONSECUTIVE ERRORLESS TRIALS, DECREASES 1" FOR EACH ERROR
/TRIAL. COUNTERS ARE PRINTED AUTOMATICALLY AT END OF RUN.
/SHOCKS FOR SLOW RESPONSE AFTER 2", 2 HZ AT 10% DUTY CYCLE FOR
/3", THEN 20% DUTY CYCLE. ERRORS PUNISHED BY 0. 5" SHOCK.
/LATENCY HISTOGRAM BINS ARE .25" WIDE.

/STIMULUS CODES (SCODE) /INPUTS
/4 = RED Ri - SAMPLE KEY
/5 = GREEN R2 - LEFT MATCH KEY
/6 = BLUE R3 - CENTER MATCH KEY
/7 = WHITE R4 - RIGHT MATCH KEY
/OUTPUTS (STIMULI) R5 - MANUAL SHOCK OFF
/ 0 + SCODE - SAMPLE R6 - END OF SESSION, STORE DATA
/ 8 + SCODE - LEFT ALT. R17- SESSION START
/16 + SCODE - CENTER ALT. R18- SESSION END
/24 + SCODE - RIGHT ALT.
/17 - SHOCKER

/Z-PULSES /VARIABLES
/Z1 - INTERNAL (S. S. 1) A = SAMPLE STIMULUS
/Z2 - STOP SHOCK CYCLE B = INCORRECT HUE
/Z3 - START SHOCK CYCLE C = INDEX FOR RAND. ITI CHOICE
/Z4 - TURN ON SHOCK D = CODE--CORRECT RESP. POS'N.
/Z5 - CORRECT RESPONSE E = STATION NUMBER
/Z6 - ERRORLESS TRIAL FT= INTERTRIAL INTERVAL (ITI)
/Z7 - R2 CORRECT 0 = SELECTED (RANDOM) HUE
/Z8 - R3 CORRECT H = INDEX FOR RAND. HUE CHOICE
/Z9 - R4 CORRECT I = INCORRECT MATCH (1)
/Z1O- SAMPLE ON J = CORRECT MATCH
/Zll- INTERNAL (S. S. 7) K = INCORRECT MATCH (2)
/Z13- ERROR RESPONSE L = ERROR FLAG
/ MT= STORED DELAY VALUE
/COUNTERS N = FLAG FOR SHOCK INCREASE
/1-15 = SAMPLE R LATENCY 0 = CORRECT RESPONSE CODE
/16 = LATENCY > 3. 75" PT= DELAY
/17-31= MATCH R LATENCY Q = LEFT ERROR CODE
/32 = LATENCY > 3. 75" R = CENTER ERROR CODE
/33 = ERRORLESS TRIALS S = RIGHT ERROR CODE
/34 = ERROR TRIALS T = FLAG FOR END OF TEST
/35 = TOTAL ERRORS U = HISTO BIN FOR RESP. LATENCY
/36 = TOTAL SHOCKS V =
/ W = TEST FOR 2 ERRORLESS TRIALS
/ X = TIME, TEMP HUE VALUE
/ Y = TIME, DELAY TEST VALUES
/ Z - TIME

20

--

./KEYBOARD R17 STARTS PROGRAM, R18 STOPS IT.
/R6 SWITCH ALSO STOPS PROGRAM.
/CODES AS PER LABEL. DC

S. S. 1, /SET UP STIMULI, RUN TRIALS
$I, /INITIALIZE

•01": SET A=4,C=5, D=4,H=4,L=0, T=0,U=;
CALL STANO (17,E,Y.Z) ---- >S2

S2, /START, ZERO IET CLOCK, STORE START TIME
R17: TIME X,Y, Z;WRITE 62, XjCODE 64; Z5 ---- >S3

S3, /NEW TRIAL OR REPEAT
Z5 & L(0):C33;Z6;Zl ---- >54

:C34; Z1 ---- >S20 /ERROR, CORRECTION TRIAL
S4, /IF NOT DONE, SELECT ITI

ZI & T(3): ---- >S2
: RAND5, C, FT, 5", 6", 7", 8", 9" ; Z 1---->S5

S5, /SELECT COLORS
Z 1 P. T (3): ---- >32

:RAND4, H, B, 4, 5, 6, 7; Z1 ---- >S6
S6, /ASSIGN COLORS

Z1 & H(3):SET A=B;Z1 ---- >S5
&, H(2):SET X=B;Zl ---- >S5

& H(1):SET Y=B,H=4;Z1 ---- >S7
:TYPE "OOPS!"; SET H-4 ---- >S5

S7, /BRANCH ON LAST CORRECT POSITION
Zi & D(2):Z1 ---- >S8

& D(3):Z1 ---- >9
& D(4):Z1 ---- >S10

:SET D=4# H=4i TYPE "OOPSI! ------ >S5
S81 /LAST WAS LEFT

ZI & P(500):SET D=3iZ1 ---- >S12
:SET D=4;Zl ---- >S13

59, /LAST WAS CENTER
Z1 & P(500):SET D=2,Zl ---- >S11

:SET D=4; Z1 ---- >S13
SIO, /LAST WAS RIGHT

Zl & P(500):SET D=2;Zl ---- >S11
:SET D=3Z1 ---- >S12

Z1:SET I=X+16,.JA+8,K=Y+24,0=A+12,R=I-14,S=K-17; Z1-->S14
S12,

ZI:SET I=X+8,J=A+16,K=Y+24,0=A+16,Q=I-11,S=K-17; Z1-->S14
S13,

ZI:SET I=X+8,J=A+24,KY+16,0=A+20,Q=I-11,R=K-14;Zl-->SI4
S14, /START NEW TRIAL OR QUIT

ZI & T(3): ---- >S2
FT:ON A;CODE 44;SET PT=MT;Z10 ---- >S15

S15, /DETECT EARLY SAMPLE R OR START SHOCK
RI:OFF A;CU;CODE 45iZl ---- >$17
2": Z3;CODE 40 ---- >S16

S16, /DETECT LATE SAMPLE R, TURN OFF SHOCK
Rl:OFF A; CU; Z2iCODE 46; Z1 ---- >17

-- 21 -

S17, /TURN ON MATCHES
PT: ON I, ON J; ON K; CODE 47;Z Z---- >S18

518. /SET UP RESPONSE CONTINGENCIES
Zi & D(2):Z7 ---- >S19

& D(3): ZS-----),S19
& D(4):Z Z~---- >S19

OFF IiOFF J;OFF K;TYPE 'OOPS2!"---->S2
519, /WAIT FOR RESPONSE OR TURN ON SHOCK

Z5: Z5 ---- >S3

S20, /START CORRECTION TRIAL
2":ON A; CODE 48; Z1O ----->S15

S. S. 2, /CORRECT RESPONSE AND ERROR DETECTION & CODING
51. /BRANCH ON CORRECT POSITION

Z7: SET L=O- ----::>S2
Z8. SET L=O ---- >S4
Z9:SET L=O---- >S3

S2, /R2 CORRECT (LEFT)
R2: OFF I;OFF J;OFF K;CLI;CODE O;Z2;Z5 ---- >S1
R:3: C35;CODE R; SET L1I; Z13---- >SX
R4: C.3'5,CODE 5; SET L=1; Zl3---- >SX

S3, /R4 CORRECT (RIGHT)
R4: OFF I;OFFJiQFF K; CU; CODE O;Z2;Z5 ---- >S1
R3:C35;CODE RiSET L=1;Z13 ---- >SX
R2: C35; CODE Q;SET L-1;213 ---- >SX

S4, /R3 CORRECT (CENTER)
R3: OFF I;OFF J1;OFF K; CU; CODE O;Z2;Z5 ---- >Sl
R2:C35;CODE Q;SET L=1;Z13 --)SX
R4:C35; CODE S;SET L1iZ13 ---- >SX

S. S.3, /RESPONSE DELAY SHOCKER CONTROL
Si,

Z3:SET N=6;Z4 ---- >S2
C.2,

Z4:ON 17iC36 ---- >S3
53,

Z4 & N(O):TYPE "Z",E;SET N=20 ---- >S5
Z2: OFF 17 ---- >S1
.05":OFF 17;SUB N ---- >84

S4,
Z2: OFF 17 ---- >SI
.45":ON 17;C36;Z4 ---- >53

S5, Z2OF1 -- >l/INCREASE SHOCK DURATION

* 1O':SIJB N;Z1;OFFi7 ---- >S6
S6,

ZI & N(0):TYPE "L",E;SET N=20---- >S7

S7,
Z2: OFF 17 ---- >Si
.40":ON 17;C36 ---- >S5

22

....-

- ~ - -

4, /SESSION STOP AFTER 50 ERRORLESS TRIALS
/AND/OR RIB OR R6

$1,

R6:TIME X, YZ;WRITE 63, X ---- >STOP
R5:Z2 ---- >SX /MANUAL SHOCK OFF
R18:TIME XY,ZWRITE 63, Xi ---- >STOP

/END OF SESSION
51Z6:TIME XYZiWRITE 63, X;ON I;SET T=3;
CALL PTCNT(18,1);
TYPE "PROGRAM DONE, Ri8",E,"! "---->S2

S2,

R18:DUMP---->STOP
R6:DUMP ---- >STOP

S.. 5, /HISTOGRAM BIN COUNTING

$1,

Z7:S$ET U=17 ---- >S2
Z8:SET U=17 ---- >S2
Z9:SET U=17 ---- >S2
Z1O: SET U=I ---- >S2

S2, /BINS FOR RESPONSE LATENCY
Z2: ---- >S
.25":ADD UiZI ---- >S3

$3, /LATENCIES > 3. 75"
Z2: ---- >$1
Zi & U(16): ---- >S

& U(32): ---- >S1
: ---- >S2

S. S. 6, /SHOCK FOR WRONG RESPONSE
Si,

Z13:CODE 41;ON 17;C36 ---- >S2

S 50":OFF I ---- >SI

S.S. 7, /TITRATE DELAY
Si, /SET TEST VALUE AND INITIAL DELAY

0 O1":SET W=I,MT=4" ---- >S2
S2, /BRANCH ON ERROR, INCREASE IF LAST 2 CORRECT

Z13:Zll ---- >$3 /ERROR
Z6 & W(2):SET MT=MT+I",W=I ---- >S2 /INCREMENT

:ADD W ---- >S2 /NEED ONE MORE
$:3, /CHECK FOR MINIMUM DELAY

ZI1:CALL TEST (11,MT#2",Y);Zl1 ---- >S4
S4, /DECREMENT IF NOT MIN.

Zli & Y(2): ---- >S5 /MINIMUM
:SET MT=MT-1 .---->$5 /DECREMENT

S5, /WAIT FOR END OF TRIAL
Z6:SET W1 ---- >S2 /RESET TEST VALUE AND RETURN

$ /END OF PROGRAM

23

